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Abstract. Large Language Models (LLMs) and Visual Language
Models (VLMs) are attracting increasing interest due to their improv-
ing performance and applications across various domains and tasks.
However, LLMs and VLMs can produce erroneous results, especially
when a deep understanding of the problem domain is required. For
instance, when planning and perception are needed simultaneously,
these models often struggle because of difficulties in merging multi-
modal information. To address this issue, fine-tuned models are typ-
ically employed and trained on specialized data structures represent-
ing the environment. This approach has limited effectiveness, as it
can overly complicate the context for processing. In this paper, we
propose a multi-agent architecture for embodied task planning that
operates without the need for specific data structures as input. In-
stead, it uses a single image of the environment, handling free-form
domains by leveraging commonsense knowledge. We also introduce
a novel, fully automatic evaluation procedure, PG2S, designed to bet-
ter assess the quality of a plan. We validated our approach using the
widely recognized ALFRED dataset, comparing PG2S to the exist-
ing KAS metric to further evaluate the quality of the generated plans.

1 Introduction
Foundation Models (FMs) are machine learning models that are
trained on a broad (Internet-scale) amount of data and can be re-
fined to be used in a wide range of downstream applications [6]. Ini-
tial examples of these models, i.e., Large Language Models (LLMs)
[9, 7, 1, 31], were inherently of the Natural Language Processing
(NLP) field. Nevertheless, in the last years, we have witnessed the
emergence of multi-modal LLMs, which can handle non-textual in-
puts and outputs. Visual Language Models (VLMs) [16, 22] have
particular relevance in this category since they can take as input im-
ages and/or textual queries and generate contextual high-quality out-
puts. Additionally, the birth of many toolkits like HuggingFace [35]
or LangChain [5] have contributed to the outburst and the distribution
of such models, widening their domain of applications.

It has been demonstrated that LLMs can be used as zero-shot [12]
and few-shot [28] planners. This is due to the fact that these models
have been trained on huge amounts of data, therefore they incorpo-
rate the commonsense knowledge proper of humans [14].
1 Corresponding Author. Email: {brienza, argenziano}@diag.uniroma1.it,
vincenzo.suriani@unibas.it, domenico.bloisi@unint.eu

Figure 1. Overall view of the proposed framework. Given a task
description and an image of the scene, the plan is obtained with multi-agent

planning and assessed with the new score.

An agent with commonsense knowledge acquires complex rea-
soning capabilities via chain-of-thought [34] and it becomes able to
correctly generate a plan to achieve the desired goal. The generated
plans are grounded in the sense that actions, objects, and states all re-
fer to the specific environment the embodied agent is deliberating in,
thanks to the information incorporated in the queries. Existing solu-
tions for grounding concern encoding the environment in a structured
manner, i.e., using tables or graphs [15, 23], since they are easily
promptable to the model once converted in some sort of streamable
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Figure 2. Complete and detailed architecture of the proposed method. The task description and the image are given in input to the agents that extract
meaningful information from the scene. Their output is then processed by the planner agent that obtain the final plan. Such plan is then compared with the

ground truth and evaluated according our new metric that takes into account semantically meaningful information.

format. However, these kinds of representations grow very quickly
as the environment grows in size, thus it becomes difficult to incor-
porate them in a language model query prompt. The context win-
dow, namely the amount of text the model can handle as input when
generating language, becomes very big as the prompt increases, and
the output could be affected by several hallucinations [17]. This is a
problem in any LLMs application, but particularly when we are try-
ing to plan a specific procedure to achieve a certain goal. For this
reason, it is important to keep the input to the model as small as
possible, including only the necessary information to carry out the
desired task. In fact, decomposing the goal into several sub-goals for
multiple independent agents can drastically improve the final output,
thus performing better w.r.t. single-agent architectures [33, 30, 20].

In this paper, we analyze the capabilities of FMs when used as
reasoning components. In particular, we use FMs to deploy grounded
plans for embodied agents in free-form domains, i.e. domains that
come without a structured representation. All we need is a picture of
the scene that captures the most relevant aspects of the environment,
and a textual query on the goal we want to achieve. Our approach
exploits a hierarchical multi-agent structure, in the sense that every
agent is a different VLM/LLM instance which addresses to solve
only one aspect of the whole planning procedure, according to the
definition given by [30]. In this way, every agent has a limited context
window, thus being less prone to hallucinations.

We conduct a comparative study to demonstrate that our single-
image multi-agent scheme outperforms both an architecture utiliz-
ing a structured environment representation (such as tabular) and a
single-agent architecture where all input is fed to the VLM simulta-
neously.

We also propose Planning Goal Semantic Score (PG2S), a new
metric that does not rely on user validations to evaluate the results.
PG2S does not consider the partial ordering of actions needed to
carry out the plan to achieve a goal, and it is semantically sound in
the sense that it deals with synonyms without losing the meaning of
the plan. In Fig. 1 it is possible to see an overall view of our system.
In summary, the contribution of this work is three-fold:

• We demonstrate that it is possible to soundly plan to achieve a task
with a VLM and a query input, relaxing the assumptions about
complex structured query;

• We propose a multi-agent framework to decompose the final task
into different sub-tasks, thus reducing the risk of hallucinations

and other harmful phenomena;
• We introduce a new metric, PG2S, to autonomously evaluate the

correctness of a plan expressed in natural language that is partial-
ordering agnostic and semantically aware.

We validate our approach on ALFRED [27], a benchmark purpose-
fully designed to evaluate natural language instructions mapping in
household environments, built upon the AI2-THOR framework [13].
For comparison, we use G-PlanET [15], which contains all the sim-
ulation environments of ALFRED but represented in a tabular form.
We release the code, the prompts used and the results obtained on
our project website.2

2 Related Work
In this section, we discuss existing solutions about both using LLMs
for planning and adopting a multi-agent architecture for prompting.

2.1 LLMs as Planners

A pioneering work that exploits the use of LLMs for embodied
agents is SayCan [2], where a robot can behave as “hands and eyes”
for an LLM when grounding tasks in real-world scenarios, taking ad-
vantage of the semantic knowledge of the model when performing
complex instructions. Following this research, several approaches
started to emerge that tried to use LLMs as the planning component
in many different use cases.

Huang et al. [12] demonstrate that LLMs behave like zero-shot
planners when they are correctly prompted. In contrast, Song et al.
[28] show that tuning these models in a few-shot setting, allows them
to surpass state-of-the-art Vision Language Navigation (VLN) mod-
els even if they are trained on a broader amount of data, thanks to
LLMs’ embedded commonsense knowledge.

LLMs’ capabilities change when the query in input is not com-
pletely textual, but can assume a more structured form, e.g., a tabular
structure [15], a graph-like structure [23] (such as 3D Scene Graphs
[4]), or even LTL formulas [8]. Incorporating this additional infor-
mation is useful to improve the overall performance in the desired
tasks. However, the biggest drawback of these techniques is that they
require a very high computational cost when applied to real-world
scenarios, where the environment is unstructured.
2 https://lab-rococo-sapienza.github.io/map-vlm/
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New research directions were possible thanks to advancements in
VLMs, such as the possibility of directly processing visual queries
given to embodied agents. Allowing systems to take in input images
of the environment can solve the problem of creating complex struc-
tured representations, saving time and computations while still main-
taining the reasoning power of LLMs. For example, [10] shows that
it was possible to use VLMs to find objects in the environment that
are described by natural language descriptions given by humans (like
a “cat-shaped mug”).

However, choosing which VLM to use is not a trivial task. Many
VLMs are built upon CLIP [21], but these models present bags-of-
words behaviors [38], namely they ignore semantic structures of in-
puts, such as spatial relationships between objects. To cope with this
problem, LLM-Grounder [37] shows that it was indeed possible to
exploit the power of VLMs to plan for embodied agents while reduc-
ing the effects of the bags-of-words phenomenon. In our approach,
we adopt VLMs to get rid of complex structured inputs, but at the
same time, we reduce as much as possible the bags-of-words behav-
ior by using a multi-agent approach. Our approach is able to decom-
pose the task into sub-tasks in such a way that potentially problematic
relations are handled by a specific agent.

2.2 Multi-agent Prompting

As LLMs became more and more diffused, it was discovered that
specific prompting patterns produced better results than free-form
prompts (prompt engineering) [39]. In planning applications, chain-
of-thought reasoning [34] has marked a notable advance, with multi-
step reasoning.

Another important step in prompt engineering with LLMs is
achieved by leveraging the power of multi-agent systems. In [30], a
collaborative environment where multiple agents with different roles
had to work together to accomplish a task, is demonstrated to have
better performance w.r.t. a single-agent. Moreover, results improved
not only in settings with many role-specific agents but also in settings
with multi-persona self-collaborating agents[33].

Several frameworks started to emerge, simplifying the develop-
ment of multi-agent applications [36, 24, 26]. As a drawback, these
frameworks intrinsically increase the complexity of the systems that
adopt them.

3 Methodology
The typical interaction between an LLM and a user consists of a
trial-and-error process to obtain the desired result by refining the
prompt. The accuracy of the environmental information is crucial
to obtain a correct plan. Usually, this information comes from tables
or structured data. Our method is based on relaxing the structured
information known a priori from a previous labeling process. In our
architecture, we use a multi-agent pipeline that takes as input only an
image of the environment, along with the task to execute. Then, we
show how this strategy allows us to have a correct plan, even in free-
form domains. To assess the correctness, we use our PG2S metric by
comparing the plans devised from images and those from tables by
referring to ALFRED’s annotations.

3.1 Multi-agent Planning

Our solution employs three agents, each representing a phase in the
planning generation process: the Semantic-Knowledge Miner Agent
(SKM), the Grounded-Knowledge Miner Agent (GKM), and the

Planner Agent (P). GPT-4V is used for agents that process images,
while GPT-4 is used for the planning agent [1].

The SKM Agent identifies object classes within the image and es-
tablishes the scene’s ontology. It also determines relationships be-
tween objects, creating a knowledge graph. The GKM Agent grounds
these objects, providing short descriptions that include their relation-
ships with surrounding objects, resulting in a high-level yet struc-
turally sound scene description. The P Agent then generates a plan
using the information from the SKM and GKM Agents. This method
minimizes hallucinations and focuses the plan on the relevant objects
in the scene.

Using a Visual Language Model (VLM), we achieve better results
with a multi-agent strategy compared to a single-agent approach. In a
single-agent setup, the prompt directs the VLM to create a plan from
the input image. In contrast, the multi-agent setup allows the Miner
Agents to enrich the Planning Agent’s knowledge with detailed en-
vironmental information, as illustrated in Fig. 2.

The multi-agent strategy enhances plan quality by distributing the
workload among agents, each handling specific tasks. This division
reduces the risk of hallucinations by maintaining smaller, more fo-
cused prompts within each agent’s context window [17]. By splitting
the task into simpler sub-tasks, our pipeline ensures more accurate
and coherent responses, following the "divide and conquer" princi-
ple.

3.2 Evaluation

Choosing an adequate metric to evaluate the quality of produced
plans is not trivial. Usually, only the Success Rate (SR) or the SR
weighted by the inverse path length (SRL) are used to evaluate the
plan correctness [28, 10]. However, these metrics are not very conve-
nient to compute, and researchers often rely on Amazon Mechanical
Turk to check the correctness using human experts. Moreover, they
do not evaluate the quality of the plan: they state how many times the
goal is achieved and how the length of the plan influences the result.

G-PlanET [15] tries to define a new metric to cope with this prob-
lem: inspired by metrics used for semantic captioning like CIDEr
[32] and SPLICE [3], it proposes KeyActionScore (KAS). KAS
builds a set of key action phrases obtained from every step of the gen-
erated plan Ŝi, and from the reference plan of the dataset Si. Then,
by checking how many action phrases in Ŝi are covered by Si, and
by computing this precision, it is possible to evaluate the matching
quality of the two sets for the i-th step of the plan.

This metric present two main limitations. The first is that it always
assumes that the reference plan is correct, which is not always true
as we found some examples in the ALFRED dataset of plans that are
not completely correct: e.g. the reference plan for the goal "Put a hot
bread in the refrigerator" has as one of the steps the action "put the
knife in the microwave" which is extremely dangerous and globally
incorrect for the desired goal. The second is that in definition of KAS,
a mapping is considered correct if and only if it follows the order of
actions given by the step. This is a strong assumption, since there are
many plans in which the order of actions is not necessary to reach a
goal [19], so it can penalize plans that are actually correct.
To this end, we propose a new metric, PG2S, that copes with this
problem. As an example, we show a reference plan that can be used
as a ground truth plan and a possible predicted plan (see Table 1). The
predicted plan to reach the goal "Wear a pair of shoes" is correct for
a human evaluator. Despite this, the plan is different from the ground
truth in the order of the actions, and the evaluation should be able to
take into account this possibility. Using the KAS metric the similar-



Table 1. Example of partial-ordering of actions.

Ground truth plan:
Carefully wear the left sock.
Wear the right sock.
Put on the snug left shoe carefully.
Slip into the right shoe comfortably.

Predicted plan:
Wear the right sock with care.
Carefully wear the right shoe.
Gently wear the left sock first.
Slide into the left shoe carefully.

Algorithm 1 PG2S Evaluation Procedure
Require: Pgt ground truth plan,Ppred predicted plan
Ensure: PG2S

1: MaxSimilP lan,MaxSimilGoal← [ ]
2: for si ∈ Pgt do
3: find the most similar sentence sj in Ppred

4: if exists: add 1 to MaxSimilP lan; otherwise add 0
5: Ppred.pop(sj)
6: Splan ← mean(MaxSimilP lan)
7: Agt, Apred ← [ ]
8: for si, sj ∈ Pgt,Ppred do
9: add actions in Agt and Apred with Framing()

10: for ai ∈ Agt do
11: find the most similar action aj in Apred

12: if exists: add 1 to MaxSimilGoal; otherwise add 0
13: Apred.pop(aj)
14: Sgoal ← mean(MaxSimilGoal)
15: PG2S ← α ∗ Splan + (1− α) ∗ Sgoal

ity score is equal to 0.33; while for PG2S (ours) the similarity score
obtained is equal to 0.83. Algorithm 1 presents the procedure used to
compute such an evaluation score. More in detail, given two sets of
planning descriptions, Pgt and Ppred, respectively the ground truth
plan and the predicted plan, we aim at quantifying their similarity, us-
ing two levels of evaluation, namely a sentence-wise and a goal-wise,
both based on the semantic values. To determine if two embeddings
are similar we use a threshold mechanism. In particular, we adopt
the approach presented in [25], where the authors obtain thresholds
that vary according to the dimensionality of the embedding vector
and verify that their use allows to obtain only semantically similar
elements.

Sentence-wise similarity. To compute the sentence similarity, we
deploy embedding vector representations for each sentence using
a Sentence Transformer. In particular, we use MPNet [29], which
achieves better results in semantic evaluation tasks compared with
previous state-of-the-art pre-trained models [29] (e.g., BERT, XL-
Net, and RoBERTa). For each sentence si ∈ Pgt and sj ∈ Ppred, we
obtain the similarity between their embeddings (vi and vj) using the
cosine similarity cos(vi, vj). For each si, we identify the most simi-
lar sentence in Ppred (line 3) and remove it from the set (line 5). The
value of each similarity yields a list of maximum similarity scores.
The sentence-wise similarity is the average of these scores (line 6).

Splan(Pgt,Ppred) =
1

N

N∑
i=1

MaxSimilPlani (1)

Goal-wise similarity. To compute the goal similarity, we first per-
form a POS tagging pre-processing stage using spaCy [11], and then,
for each sentence we extract the main action using a Framing() pro-
cedure (line 9). This procedure works as follows: for each word in a
sentence, we add it in the action set if it is either i. a central (‘root’)
verb (VERB), or ii. if it is a noun (NOUN) and its dependency tag
is either a ‘direct object’ (DOBJ) or the ‘nominal subject’ (NSUBJ).
In this way, for each step we obtain the main action and the involved

objects. For each action ai ∈ Agt and aj ∈ Apred, we obtain a sim-
ilarity value from the product between the mean of nouns similarity
and the verbs similarity, obtained from a WordEmbeddingSimilar-
ity() tool (Word2Vec [18]).We consider two nouns and two verbs to
be similar if their similarity value exceeds a threshold τ = 0.708,
according to [25].

For each action ai in Agt we identify the most similar action in
Apred and remove it from the set. The most similar action is found
using the combined similarity computed with the product of both
values (line 11) and removed from Apred (line 13). The value of
each action similarity yields a list of maximum similarity scores. The
average of these scores gives us the goal-wise similarity of the sets
(line 14).

Sgoal(Agt,Apred) =
1

N

N∑
i=1

MaxSimilGoali (2)

PG2S. The final similarity score is our metric PG2S, which is a
weighted average of the sentence-level and action-state similarities,
where α is a weighting factor, set to 0.5 to equally balance the con-
tributions of the two scores:

PG2S = (1−α) ∗Splan(Pgt,Ppred)+α ∗Sgoal(Agt,Apred) (3)

Another issue arises because KAS employs a set intersection,
whereby terms that are not equal are not considered for the similarity
calculation. This can result in the problem of having the same action
with a subject that is not appropriate for use in the case of goal simi-
larity. To illustrate this aspect, consider the action "Walk to the desk"
in comparison to "Walk to the moon". In the case of KAS, the re-
sulting similarity score is 0.67 because two out of three elements are
equal, whereas in PG2S, the similarity score is 0. This discrepancy
can be attributed to the fact that KAS does not consider the nuances
of natural language, whereas PG2S does.

4 Experimental Results
This section presents the outcomes of the conducted experiments,
which were designed to test the proposed architecture’s validity. The
results obtained using a single image are presented and then com-
pared with a structured perception of the environment, as seen in
state-of-the-art works. The output plans regarding home scenarios
tasks are taken from the ALFRED dataset using the AI2Thor envi-
ronment. Chosen the image and the environment, for each of those
we have found the plan associated with the scene and saved the
ground truth plans that we have used to compare our results. The
environment scenarios are chosen by selecting several different situ-
ations in order to have various complexity and domains of application
according to the chosen fields of ALFRED such as: picking up ob-
jects and placing them; picking up objects, heating or cooling them,
and place them somewhere else; cleaning objects and examining un-
der the light; and more.

4.1 Evaluation of our PG2S Metric
During the experimental phase of PG2S development, a series of tests
were conducted to ensure the correctness of the metric. Specifically,
we compared ALFRED plans with those predicted by our architec-
ture, together with their corrupted version. During the test phase, sev-
eral examples were selected from the ALFRED dataset. The plans
obtained were checked qualitatively and it was possible to verify
that the plans generated by the multi-agent architecture are correct



in terms of the sequence of actions. The corrupted plans ensure that
the goal similarity will be respected and will not return a high level
of similarity in case of ambiguity.

An example of ground truth plan taken from the ALFRED dataset
for the task “cool the tomato in the refrigerator, put it by the toaster”
is the following:

• Turn right, walk across the room to the
counter on the right side of the stove.

• Grab the tomato on the counter.
• Turn around, walk to the refrigerator.
• Put the tomato in, close the refrigerator,
wait a while, open the refrigerator, take
the tomato out, close the refrigerator.

• Turn around, walk to the stove.
• Put the tomato down on the counter in front
of the toaster.

The corresponding predicted plan by our architectur for the same task
is:
• Walk to the kitchen island, which is in
front of the kitchen counter.

• Pick up the tomato, which is on the kitchen
island.

• Walk to the refrigerator, which is to the
left of the kitchen island.

• Open the refrigerator door.
• Place the tomato inside the refrigerator.
• Close the refrigerator door.
• Wait for the tomato to cool.
• Open the refrigerator door.
• Take the cooled tomato out of the
refrigerator.

• Close the refrigerator door.
• Walk to the kitchen counter, which is to
the right of the refrigerator.

• Place the cooled tomato by the toaster,
which is on the kitchen counter.

The generated plan and the ground truth plan, compared with both
metrics, obtain a 50% percentage of similarity with PG2S compared
to a 30% percentage by KAS. The most notable distinction between
the two plans is the navigation sequence required to reach the object
in question. In the ground truth plan, the kitchen objects are reached
differently than the predicted plan. Additionally, there is a notable
difference in the number of actions required to cool a tomato in the
refrigerator. In the predicted plan, there are seven steps, while in the
ground truth, there is only one. Then, the predicted plan was cor-
rupted by replacing kitchen → bathroom and tomato → bottle, and
we verified the drop of similarity from 50% to 25% in PG2S, while
KAS decreased from 30% to 26%. In this case, the PG2S similar-
ity is halved, while in KAS the modification of the plan does not
affect much. The step-by-step comparison performed by KAS does
not allow an analysis of whether the goals are carried out during the
planning; moreover, the cross-comparison of words loses sight of the
semantic content. Table 2 shows how the similarity score drops after
corrupting the plan by changing the objects due to the PG2S seman-
tic search. The plan available presents an id "trail_ID" associated
with a ground truth plan and a goal that can be found in the G-Planet
dataset.3 The metric does not evaluate the success score of the plan
but compares the steps with a semantic evaluation. Table 2 also il-
lustrates the scores obtained by comparing the plans obtained with
KAS and PG2S before corruption. In each case, the degree of simi-
larity obtained is superior to that of KAS. Both metrics are used in

3 https://huggingface.co/datasets/yuchenlin/G-PlanET/viewer/default

Figure 3. One of the scenes used for the experimental tests. A screenshot
from AI2Thor is used to perform the planning.

the following section to evaluate the plan correction.

4.2 Evaluation of our Architecture

To evaluate the presented methodology, we have chosen ten differ-
ent rooms of an apartment, such as a living room, a kitchen, and a
toilet. Frames were captured for each room as in the example in Fig.
3 which depicts a kitchen. The complexity of generating a plan is
evident, given that an entire scene is represented by a single image
and that some of the objects needed can be quite small. Our tests
demonstrated that even in complex situations, the VLM is capable of
identifying objects and perceiving their relationships, allowing it to
define a correct plan. The ten environments chosen allow us to obtain
thirty tasks to perform and, for each of these plans, we have obtained
the plan using four approaches: two using a single-agent architecture
and two using a multi-agent architecture. In both single-agent and
multi-agent evaluations, the plan was obtained using a table describ-
ing the environment rather than a single image.

Table 3 presents the results, highlighting instances where the KAS
metric fails, resulting in None values. This failure occurs because the
KAS metric cannot evaluate plans of different lengths, which was
common in the “with table” setups.

The results show how using a single image the architecture gener-
ates a plan similar to the ground truth plan. Furthermore, we demon-
strated to obtain improved results in multi-agent architecture using a
single image.

5 Discussion

The current state of the art involves the use of traditional Success
Rate metrics to evaluate a plan, where the plan is considered cor-
rect in cases where execution leads to the desired outcome. How-
ever, this metric is not sufficient or suitable for all cases where the
correctness of a task execution plan is to be analyzed. In particular,
in cases where the plan is complicated, it should be evaluated before
execution to avoid damage to the environment or simply unsuccess-
ful executions and ensure that time and resources are not wasted in
a new execution. The advent of LLMs has made it possible to eas-
ily generate plans that previously required model training or other
more complex techniques. Given that these models can’ hallucinate’
or generate incorrect responses, there could be errors present. There-
fore, these inaccuracies could lead to failures when evaluating them
based on success rates. Our work seeks to define a new PG2S met-
ric for plan evaluation based only on natural language processing

https://huggingface.co/datasets/yuchenlin/G-PlanET/viewer/default


Table 2. Similarity values are calculated between predicted plans and ALFRED-annotated plans, where the predicted plans may be corrupted by substituting
object names in the steps. For corrupted plans, lower similarity values are preferred because they indicate a greater difference from the ground truth plan.

Conversely, for uncorrupted plans, higher similarity values are desirable.

Corrupted plan PG2S KAS PG2S not corrupted KAS not corrupted
trial_T20190909_075240_427378 (laptop → bread; pen → knife) 0.138 0.148 0.458 0.211

trial_T20190906_185208_580877 (bathroom → kitchen; bottle → tomato) 0.167 0.260 0.417 0.302
trial_T20190907_020543_865134 (monitor → statue; fire → lamp) 0.000 0.208 0.500 0.311
trial_T20190907_143702_923249 (moon → desk; mouse → card) 0.000 0.000 0.875 0.090

trial_T20190907_171916_941174 (pizza → coffee) 0.083 0.055 0.167 0.104
trial_T20190909_035341_047789 (card → pencil; restaurant → desk) 0.000 0.036 0.500 0.102

Table 3. Similarity values among predicted and ALFRED annotated plans using thirty plans in ten different scenes using tables and ground truth plans by the
G-PLANET dataset.

Task_ID Single-agent w/ table Multi-agent w/ table Single-agent w/ image Multi-agent w/ image
PG2S KAS PG2S KAS PG2S KAS PG2S KAS

trial_T20190907_161326_928347 0.00 0.25 0.00 0.31 0.30 0.11 0.10 0.05
trial_T20190910_173916_331859-1 0.14 None 0.14 None 0.39 0.15 0.43 0.19
trial_T20190909_004531_429065-1 0.14 None 0.14 None 0.29 None 0.21 None
trial_T20190907_114323_767231-1 0.10 None 0.30 0.32 0.80 0.38 0.30 0.24
trial_T20190906_234735_610018-1 0.24 None 0.00 None 0.46 None 0.46 None
trial_T20190907_200154_378982-1 0.37 None 0.27 None 0.63 0.19 0.20 0.44
trial_T20190907_114323_767231-2 0.00 None 0.10 0.42 0.47 0.26 0.30 0.09
trial_T20190906_234735_610018-2 0.41 None 0.07 0.23 0.41 None 0.61 0.06
trial_T20190909_082934_483899-1 0.31 0.47 0.31 None 0.29 0.19 0.39 None
trial_T20190909_100946_496614-1 0.27 None 0.37 None 0.37 0.21 0.47 0.17
trial_T20190907_200154_378982-2 0.55 None 0.70 None 0.65 0.20 0.65 0.18
trial_T20190909_082934_483899-2 0.14 None 0.14 None 0.42 0.14 0.29 0.14
trial_T20190909_012550_586494-1 0.30 None 0.30 None 0.29 0.05 0.43 0.08
trial_T20190909_082934_483899-3 0.29 None 0.29 None 0.57 0.21 0.57 0.10
trial_T20190909_100946_496614-2 0.55 None 0.35 None 0.65 0.34 0.65 0.42
trial_T20190906_234735_610018-3 0.54 None 0.41 0.35 0.48 None 0.61 None
trial_T20190909_012550_586494-2 0.20 None 0.20 None 0.29 None 0.34 None
trial_T20190907_114323_767231-3 0.00 None 0.10 None 0.30 0.17 0.30 0.13
trial_T20190907_114323_767231-4 0.50 None 0.00 0.60 0.20 0.12 0.50 0.23
trial_T20190909_004531_429065-2 0.23 None 0.23 0.47 0.29 0.23 0.44 0.15
trial_T20190909_193045_208933-1 0.35 None 0.35 None 0.55 0.24 0.40 0.19
trial_T20190909_193045_208933-2 0.35 None 0.45 0.33 0.65 0.27 0.30 0.20
trial_T20190907_114323_767231-5 0.23 None 0.23 None 0.33 0.23 0.33 None
trial_T20190910_173916_331859-2 0.14 None 0.07 None 0.36 0.11 0.36 0.12
trial_T20190909_004531_429065-3 0.37 None 0.23 None 0.37 None 0.43 0.21
trial_T20190907_200154_378982-3 0.20 None 0.00 None 0.00 None 0.55 0.04
trial_T20190910_173916_331859-3 0.24 None 0.31 0.39 0.43 0.16 0.43 0.20
trial_T20190907_114323_767231-6 0.00 None 0.00 0.39 0.20 None 0.40 0.30
trial_T20190909_193045_208933-3 0.00 0.26 0.00 0.35 0.20 None 0.30 0.21
trial_T20190909_012550_586494-3 0.31 None 0.24 None 0.21 0.18 0.21 0.19

while avoiding execution of the obtained plan to ensure the correct-
ness of results. Although the presented metric can only provide a lim-
ited evaluation in cases where the final goal is not detailed enough,
to the best of our knowledge, PG2S is the first contribution that ad-
dresses the problem in a way as general as possible. This paves the
way for novel approaches where language processing techniques are
adopted for the plan evaluation task. Future advances may improve
the presented metric.

6 Conclusion

In this paper, we, first, introduced a multi-agent planning framework
that leverages the capabilities of Visual Language Models (VLMs)
to improve planning for embodied agents without the need for pre-
encoded environmental data structures. Our approach simplifies the
input requirements by utilizing a single environmental image and
also enhances the adaptability and effectiveness of the planning pro-
cess through a multi-agent system. This innovation addresses the
limitations of traditional models that rely heavily on structured data,
providing a more flexible and dynamic planning mechanism that is

particularly effective in unstructured, real-world scenarios.
The empirical results, validated using the ALFRED dataset,

demonstrate the efficacy of our approach, especially when compared
to existing metrics like the KAS metric. We, then, introduce a new
metric for the plan evaluation. The newly proposed PG2S metric,
which assesses planning quality based on semantic understanding
rather than strict action order, has shown superior performance in
capturing the variations of plan execution.

The presented approach can address some of the current limita-
tions in embodied agent planning and can open future research in
the application of VLMs and multi-agent systems. Future studies
might explore the scalability of our approach to more complex multi-
agent environments and the integration of more diverse modalities
to enhance the agents’ understanding of their operational contexts.
PG2S explores novel possibilities in the plan evaluation, focusing on
semantic integrity rather than strict action sequencing. We believe
that the research community can take advantage of the proposed ap-
proach, considering semantic coherence as a critical component of
plan success, especially in applications requiring high reliability and
safety.
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