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Abstract

Tracking objects that move within dynamic environments
is a core challenge in robotics. Recent research has ad-
vanced this topic significantly; however, many existing ap-
proaches remain inefficient due to their reliance on heavy
foundation models. To address this limitation, we pro-
pose LOST-3DSG, a lightweight open-vocabulary 3D scene
graph designed to track dynamic objects in real-world en-
vironments. Our method adopts a semantic approach to en-
tity tracking based on word2vec and sentence embeddings,
enabling an open-vocabulary representation while avoid-
ing the necessity of storing dense CLIP visual features. As
a result, LOST-3DSG achieves superior performance com-
pared to approaches that rely on high-dimensional visual
embeddings. We evaluate our method through qualitative
and quantitative experiments conducted in a real 3D en-
vironment using a TIAGo robot. The results demonstrate
the effectiveness and efficiency of LOST-3DSG in dynamic
object tracking. Code and supplementary material are pub-
licly available on the project website at https://lab-rococo-
sapienza.github.io/lost-3dsg/.

1. Introduction

The ability to reconstruct and represent the surrounding
environment is a fundamental requirement for autonomous
robots. This task is inherently challenging due to the
need to recognize objects across different scales, handle
duplicate instances, and remain robust to varying lighting
conditions. The problem becomes even more complex in
dynamic settings, where objects may change position or ap-

pearance over time. Without an accurate and continuously
updated model of the world, a robot’s capacity to reason,
plan, and act safely and effectively is severely constrained.

Humans naturally build internal representations of their
environment and continuously refine them as the world
evolves. This process involves tracking entities over time,
understanding their motion, and maintaining semantic
consistency despite changes. Replicating these capabilities
in robots remains a significant challenge, particularly in
real-world scenarios characterized by partial observability
and frequent environmental changes.

Recent work on scene representation has increasingly
adopted 3D Scene Graphs (3DSGs) [3, 29] as a flexible and
expressive framework for modeling complex environments.
By integrating geometric structure with semantic informa-
tion, 3DSGs describe scenes as collections of object-centric
nodes augmented with attributes and relational edges.
This abstraction shifts scene understanding from low-level
geometry to a structured, object-level representation that
explicitly captures entities and their relationships.

Within this line of research, open-vocabulary
3DSGs [10, 15, 19, 32] have gained significant attention.
These approaches leverage large pre-trained Foundation
Models (FMs), including Vision-Language Models (VLMs)
and CLIP [25], to encode object nodes with rich seman-
tic representations that are not limited to a predefined
taxonomy. As a result, robots can recognize and reason
about previously unseen objects and concepts, substantially
improving generalization in unstructured environments.

Despite these advantages, such expressiveness often
comes at a significant computational and memory cost.
Many existing methods rely on storing dense CLIP em-
beddings at the voxel or point level, producing large-scale
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semantic maps that are expensive to construct, update, and
maintain [10, 33]. These costs are intensified in dynamic
environments, where frequent updates are necessary to
reflect changes in object pose and state. The repeated
extraction, storage, and management of high-dimensional
semantic features ultimately limit scalability and real-time
applicability, highlighting the need for more efficient
representations that preserve open-vocabulary reasoning
while reducing computational overhead.

We propose LOST-3DSG, a lightweight open-vocabulary
3D scene graph designed for dynamic environments. In
contrast to existing approaches that store dense CLIP
embeddings for objects in the scene, LOST-3DSG relies on
low-cost word2vec [20] embeddings derived from semantic
attributes extracted using a VLM. These compact semantic
representations enable robust tracking of dynamic objects
over time by reasoning at the attribute level. Rather than
depending solely on geometric consistency, the system
determines whether an observation corresponds to a
previously seen object or a new instance by matching its
semantic attributes. For example, if an object previously
identified as a "red and brown, wooden and
metal hammer" reappears at a different location, it is
more likely the same object that has moved rather than a
newly observed one. By benchmarking our method against
CLIP-based approaches and conducting an extensive
ablation study, we demonstrate that our system can accu-
rately track objects in the scene while maintaining a low
computational footprint. To further validate the proposed
approach, we deploy it in a real-world environment using a
TIAGo robot1. We summarize our contributions as follows:

• LOST-3DSG, a lightweight open-vocabulary 3D scene
graph tailored for dynamic environments;

• an efficient semantics-based tracking algorithm that up-
dates the 3DSG as previously observed objects move or
temporarily disappear;

• an extensive experimental evaluation, including compar-
isons with CLIP-based methods, ablation studies, and
real-world deployment on a TIAGo robot, demonstrat-
ing accurate object tracking with a limited computational
footprint.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work on 3DSGs and scene represen-
tations for dynamic environments. Section 3 describes the
proposed approach in detail. Sections 4 and 5 present the
experimental setup and the obtained results, which are then
discussed in Section 6. Finally, Section 7 draws the conclu-
sions and outlines directions for future work.

1https://pal-robotics.com/robot/tiago/

2. Related Work
3D Scene Graphs In recent years, 3DSGs [3, 13, 29]

have emerged as a prominent and widely adopted repre-
sentation for modeling 3D environments. These represen-
tations describe a scene as a graph in which objects are en-
coded as nodes, while semantic, spatial, and functional re-
lationships between them are captured through edges. This
structured formulation provides a compact yet expressive
way to model the entities present in an environment and to
reason about their interactions. A key strength of 3DSGs
lies in their flexibility. By tailoring node attributes and re-
lational edges to the requirements of a given application,
3DSGs can support a broad range of downstream robotic
tasks, including navigation [34], task planning [18, 22, 26],
manipulation [12, 14, 27], and human-robot interaction [4,
17]. Moreover, their graph-based structure makes them eas-
ily serializable in formats such as JSON, facilitating their
integration into LLM-augmented applications [6, 9, 26].

Open-Vocabulary Scene Understanding Recent ad-
vances in computer vision, together with the development
of Large Language Models (LLMs) and other FMs, have
enabled open-vocabulary scene understanding and pars-
ing [37]. These approaches allow scenes to be analyzed
and objects to be detected without being constrained by a
fixed, predefined taxonomy of labels, thereby improving
generalization to novel and previously unseen concepts.
A common strategy to achieve open-vocabulary under-
standing in 3D environments is to augment existing scene
representations with semantic features extracted from
pre-trained models such as CLIP [25]. By associating
CLIP embeddings with elements of a scene representation,
whether voxels, points, primitives, or object nodes, it
becomes possible to endow a wide range of mapping
paradigms with rich, open-vocabulary semantics, including
NeRF [8], Gaussian splatting [11], point clouds [24],
and 3DSGs [15]. In doing so, however, open-vocabulary
3DSGs such as ConceptGraphs [10] and DovSG [33]
require storing high-dimensional semantic features for each
voxel in the scene, resulting in a queryable representation at
the expense of a substantial memory footprint. In contrast,
our method enables an open-vocabulary representation
while requiring only a fraction of the computational
resources used by CLIP-based approaches.

Tracking in Dynamic Environments Object tracking
in dynamic environments has long been a fundamental
challenge in robotics. Over the years, a wide range of ap-
proaches have been proposed, including filtering techniques
such as Kalman filters [31], probabilistic formulations [5],
learning-based methods [23], and generative models [2].
More recently, a growing body of work has focused on
semantic tracking, where objects are tracked not only based
on their motion but also according to their semantic proper-
ties and behaviors. In this direction, Li et al. [16] propose



Figure 1. Perception Module. The current RGB frame (1) and the corresponding depth image (2) are processed to build the 3DSG of
the scene. From the RGB image, open-vocabulary object labels are extracted using a VLM and then grounded in the image to detect the
corresponding object bounding boxes on the camera plane (3). At the same time, the VLM is used to extract object-level semantic attributes,
including label, color, material, and a fine-grained description. For each object instance, pixel-level segmentation masks are obtained using
an object segmentation model and subsequently reprojected into 3D using depth information (5). In parallel, geometric primitives such as
centroids and 2D bounding boxes are computed through geometric reprojection and used to estimate 3D bounding boxes (6).

tracking entities in video by jointly reasoning about both
their trajectories, answering the question of where an object
is, and the underlying semantic events, addressing what is
happening. Similarly, Zhang et al. [35] leverage deep con-
volutional features extracted from a pre-trained VGG [28]
network to continuously track dynamic objects over time.
SemTrack [30] further advances this line of research by
introducing the first large-scale dataset designed to train
and evaluate models for semantic tracking in unconstrained
environments. Inspired by these approaches, we design a
semantic tracking algorithm that maintains object identity
by reasoning over semantic attributes such as color and
material, while updating object positions within the scene
graph as the environment evolves. To the best of our
knowledge, this is the first method to perform semantic
object tracking directly within a 3DSG representation.

3. Methodology
To construct a lightweight 3DSG from sensory observa-
tions, LOST-3DSG relies on two main components: the
Perception Module and the Scene Update Module. The
Perception Module processes raw sensor data to generate
an initial 3DSG of the environment and, at the same time,
extracts the semantic attributes associated with each object
node. These attributes are later exploited for semantic
tracking across observations. The Scene Update Module

integrates newly acquired information into the previously
constructed 3DSG, which serves as a persistent world
anchor. Leveraging the proposed semantic tracking algo-
rithm, this module detects when previously observed object
instances reappear, move, or disappear as new observations
are processed, and updates the 3DSG accordingly.

This section is organized as follows. Section 3.1 de-
scribes the Perception Module and its main components.
Section 3.2 details a similarity score based on objects se-
mantic attributes. Finally, Section 3.3 explains how the
Scene Update Module uses this function to perform seman-
tic tracking and to update the 3DSG over time.

3.1. Perception Module

The core objective of the Perception Module (PM) (Fig. 1)
is to generate a 3DSG representation of the scene. Formally,
we define a 3DSG as a hierarchical graph G = (V, E),
where each node v ∈ V represents an object in the environ-
ment. In terms of hierarchical structure, we consider three
layers: the room layer, the supporting objects
layer, and the objects layer. Edges are defined only be-
tween adjacent layers and encode belonging relationships.
This design choice reflects our focus on object-centric mod-
eling, as the extraction of more complex semantic relations
between nodes lies outside the scope of this work. Each
node is enriched with a set of attributes that are essential for



the proposed semantic tracking algorithm. In addition to an
object label ℓ, we assign to each node its 3D bounding box
b3D ∈ R6, color c, material m, and a short description d
capturing fine-grained visual characteristics. This descrip-
tion supports instance-level discrimination between objects.
In real-world environments, multiple objects may share the
same label, material, and color while still differing in subtle
visual details, such as surface patterns, wear, or scratches.

The PM builds upon the EMPOWER framework [1],
with several modifications tailored to continuous perception
in dynamic environments. In particular, we extend EM-
POWER with a streaming processing pipeline that incre-
mentally handles sequential observations as the robot nav-
igates through the environment. A first modification con-
cerns open-set object labeling. In the original EMPOWER
pipeline, a multi-role planner identifies task-relevant ob-
jects, which are then passed to YOLO-World [7] for detec-
tion. Since our objective is not task planning but scene un-
derstanding, we replace this component with a direct VLM
query. Given an RGB observation It at time t, the VLM
produces a set of object labels Lt = {ℓ1, ℓ2, . . . , ℓNt

}, cor-
responding to the objects present in the scene. In our imple-
mentation, we use GPT-5-mini as the VLM. The extracted
labels are then passed to an open-vocabulary object detector
to spatially ground the symbols in the image. Formally, the
detector maps the image and label set to a collection of 2D
bounding boxes Bt = {bi | bi = fdet(It, ℓi)}, where each
bounding box bi localizes the corresponding object ℓi. Un-
like EMPOWER, which relies on YOLO-World, we adopt
OWLv2 [21] due to its superior open-vocabulary detection
performance. Each detected bounding box is then processed
by EfficientViT-SAM [36] to obtain a pixel-level segmen-
tation mask mi = fseg(It, bi), which precisely delineates
the spatial extent of the object in the image. In parallel,
the cropped image region corresponding to each bounding
box is analyzed by the VLM to extract a set of semantic
attributes ai = {ℓ, c,m, d}, which are later used by the se-
mantic tracking module. Using camera intrinsics K, extrin-
sics T, and the depth map Dt, each segmentation mask is
reprojected into 3D space to label the point cloud:

Pi = π−1(mi, Dt,K,T), (1)

where π−1 denotes the back-projection operation. This
step associates each 3D point with its corresponding ob-
ject instance. Finally, the downstream components of EM-
POWER are employed to extract object nodes from the seg-
mented point cloud and to infer hierarchical relations be-
tween them, resulting in the final 3DSG representation of
the environment produced by the PM.

3.2. Lost Similarity Function
To associate object observations over time, we introduce
the Lost Similarity Function (LSF), a composite metric

designed to quantify the likelihood that two observations,
namely a current detection and an existing node in the
3DSG, correspond to the same physical instance. The func-
tion integrates multiple complementary cues into a single
similarity score, capturing both semantic and appearance-
based consistency. The LSF is defined as the weighted com-
bination of four terms:
• Semantic similarity (sℓ): computed using pre-trained

word2vec embeddings to measure the cosine similarity
between object labels. This term captures semantic re-
latedness between categories, allowing the tracker to as-
sociate objects even when their labels slightly differ but
remain conceptually related.

• Chromatic similarity (sc): computed by converting object
colors into RGB space and measuring their normalized
Euclidean distance. The similarity is defined as

sc = 1− ∥rgb1 − rgb2∥2√
3

, (2)

where normalization by
√
3 ensures that sc ∈ [0, 1].

• Material similarity (sm): analogous to semantic similar-
ity, this term uses word2vec embeddings to compare the
material attributes of objects, enabling robust matching
across observations despite minor variations in appear-
ance.

• Description similarity (sd): computed using a Sentence
Transformer (specifically, OpenAI’s text-embedding-3-
small model) to embed fine-grained textual descriptions
of objects. This term captures detailed visual character-
istics and supports instance-level discrimination between
objects that share the same label, color, and material.
The final score is obtained as a weighted linear combi-

nation of these components:

LSF (o1, o2) = αsℓ + βsc + γsm + δsd, (3)

where α, β, γ, and δ control the relative contribution of each
similarity term, and α+β+γ+δ = 1. These weights can be
adjusted to balance semantic and appearance cues depend-
ing on the characteristics of the environment and the de-
sired tracking behavior. In our experiment we set α = 0.15,
β = 0.30, γ = 0.15 and δ = 0.40 as we empirically noticed
the best results were achieved with this combination.

3.3. Scene Update Module
The Scene Update Module (SUM) (Fig. 2) is formalized
in the scene update procedure described in Algo-
rithm 1. To associate a current detection with an object
already present in the 3DSG, the system computes the
LSF between the detection and all persistent objects. The
object with the highest similarity score is selected as the
best candidate match, provided that the score exceeds a
minimum threshold τ . If no such candidate exists, the



Figure 2. Scene Update Module. During the exploration phase,
the Persistent 3DSG is incrementally populated using LSF-based
disambiguation. Once exploration ends, the system switches to
the tracking phase, where objects in the current FOV are matched
by semantic similarity and spatial consistency: moved objects are
updated, new objects are added, and missing objects are removed
or marked as uncertain.

detection is treated as a previously unseen object. The
SUM operates in two modes, controlled by the exploration
flag e: exploration and tracking, and the behavior of the
system differs significantly between these modes.

Exploration mode When the exploration flag e is
active, the system focuses on populating the 3DSG by
incrementally discovering objects as the robot navigates
the environment. For each detection, the system attempts
to associate it with an existing persistent object. If no
valid association is found, a new object node is spawned
and added to the set of persistent objects. If a match
exists, the corresponding bounding box is updated, but no
object is removed or marked as uncertain. This design
choice reflects the assumption that, during exploration, all
observations contribute to building a complete catalog of
the environment. As a result, object removal and identity
conflict resolution are intentionally disabled to avoid
prematurely discarding valid objects.

Tracking mode Once exploration is complete, the sys-
tem switches to tracking mode by setting e = false. In
this phase, the scene manager actively maintains consis-
tency between the 3DSG and the current observations. For
each detection d ∈ D, the algorithm proceeds as follows.
First, the best matching persistent object p is retrieved us-

ing the LOST similarity function. If no match is found, a
new object is spawned and marked as observed in the cur-
rent frame. Otherwise, the validity of the association is
evaluated based on spatial consistency. If the association
is deemed valid, the bounding box of the persistent object
is updated and the object is marked as seen in the current
frame. If the association is invalid, indicating a semantic
match but inconsistent spatial evidence, the system resolves
the ambiguity by removing the object from its previous lo-
cation and marking it as uncertain. A new object instance is
then spawned at the newly observed position. The removed
object is stored in the uncertain objects set, which
preserves nodes affected by identity conflicts and allows po-
tential recovery if future observations resolve the ambiguity.

Graph maintenance and cleanup At the end of each
update cycle in tracking mode, the system performs a
cleanup step based on the robot’s point-of-view (POV). The
visible volume V is computed from the current camera
pose, and persistent objects that were not observed in the
current frame but lie within the POV volume are pruned.
Similarly, uncertain objects that remain unobserved despite
being within the visible region are also removed. This
mechanism ensures that objects are only removed when
they should have been visible but were not detected, thereby
reducing false deletions due to occlusions or limited sensor
coverage.

4. Experimental Setup
This section describes the experimental setup used to
evaluate the proposed approach in a controlled laboratory
environment. Experiments were conducted using a TIAGo
robot equipped with ROS 2 Humble and operating in a
real-world indoor setting. The robot is provided with a prior
map of the environment and, during the exploration phase,
continuously localizes itself while detecting and estimating
the spatial positions of nearby objects. All observations are
subsequently projected into the global map reference frame.

To systematically assess the behavior of the system un-
der increasing levels of complexity, a set of experimental
scenarios was designed, featuring multiple tables and ob-
jects distributed throughout the environment. In total, three
scenes were created, ranging from simple static configura-
tions to more challenging dynamic setups. The evaluated
scenarios are summarized as follows, with increasing level
of complexity:
1. Level (⋆): the robot observes a scene containing three

initially static objects that, over time, move, change po-
sition, and eventually disappear from the environment.

2. Level (⋆ ⋆): the environment contains a substantially
larger number of objects. While the robot explores the
scene from multiple viewpoints, several objects change
position and some are removed entirely. This level is
more challenging due to the increased object density



Algorithm 1: Scene Update Algorithm
Input : detections D, persistent objects P , current scene

S, exploration flag e
Output: updated persistent objects P and uncertain

objects U
Function scene update:
Sseen ← ∅
foreach d ∈ D do
b← FindBBox(d)
if b = ∅ then continue
p← FindBestMatch(d,P) // LSF
if p = ∅ then
SpawnObject (d, b,Sseen)

else
if e then
UpdateBBox (p, b)

else if IsValidAssociation (p, b) then
UpdateBBox (p, b)
MarkSeen (p,Sseen)

else
MarkUncertainAndRemove (p)
SpawnObject (d, b,Sseen)

if ¬e then
V ← ComputePOVVolume(S)
PrunePersistentObjects (V,Sseen)
PruneUncertainObjects (V )

Table 1. SUM performance at different Level of Complexity
(LoC).

LoC Objects Detections Deletions Updates
⋆ 3 3/3 3/3 3/3
⋆ ⋆ 21 20/21 2/3 1/1
⋆ ⋆ ⋆ 9 2/3 2/3 13/14

combined with partial observations, object updates, and
disappearances that occur outside the robot’s field of
view.

3. Level (⋆ ⋆ ⋆): the robot operates in a smaller but highly
dynamic environment. Objects undergo numerous
position updates, with frequent changes occurring
while they are unobserved. This level stress-tests the
system’s semantic tracking capabilities, requiring it to
consistently associate object identities and infer updated
locations across time and viewpoints.

An example of execution is given in Fig. 3.

5. Results

In evaluating our system, we aim to answer the following
research questions: Q1. How effective is the SUM at
tracking objects using semantic information alone? Q2.

Figure 3. Execution instance. The agent observes a household
environment (1). During the exploration phase, a laptop, a tape
roll, a hammer, and a gamepad are added to the 3DSG (2). The
hammer is then moved to the brown surface on the left. When the
hammer is observed at its new location, the previous instance is
marked as uncertain (3), and once the original location is revisited
and the object is confirmed absent, the instance is removed from
the 3DSG (4).

What is the relative contribution of each component of the
LSF to accurate object identification and association? Q3.
To what extent does the proposed approach reduce memory
consumption compared to CLIP-based methods that store
dense semantic features?

Answers to Q1 are shown in Table 1, that highlights both
the system performance at different level of complexity, as
discussed in Sec. 5. The system demonstrates strong ro-
bustness in handling object updates across different diffi-
culty levels. In the medium scenario, the main source of
complexity arises from the substantially larger number of
objects in the environment. Several objects change position
and some are deleted while outside the robot’s field of view.
As a result, the primary challenge lies in correctly retrieving
the appropriate object instance through similarity matching,
where ambiguities in semantic associations can lead to er-
rors. The hard scenario is particularly demanding due to
the high number of object updates. In this setting, many
objects frequently change position, often without being di-
rectly observed. This configuration effectively stress-tests
the system’s semantic tracking capabilities, requiring per-
sistent object identity maintenance and accurate graph up-
dates over time. Despite these challenges, the system is able
to consistently associate updated observations with previ-
ously seen objects and correctly reflect their new positions



in the 3DSG.
We perform an ablation study to answer Q2, and the re-

sults are shown in Table 2, averaged across the three lev-
els of complexity. Detections are not reported since the
LSF does not affect that component. The full LSF achieves
the highest update stability and balanced deletion behav-
ior. When only description similarity is retained, update
performance remains relatively strong, confirming that fine-
grained textual descriptions are effective at maintaining in-
stance identity over time. However, deletions degrade no-
ticeably in this setting, indicating that descriptions alone are
insufficient to robustly decide when an object should be re-
moved. Using only semantic labels leads to poor perfor-
mance across both metrics, particularly for deletions, due to
the susceptibility of label-based matching to hallucinations
and category ambiguity. This confirms that labels alone are
not reliable for long-term object persistence. Removing ma-
terial and chromatic similarity does not affect deletions, but
significantly degrades update accuracy, supporting the inter-
pretation that low-level appearance cues are primarily used
to disambiguate visually similar instances during temporal
updates rather than for object lifecycle decisions. Overall,
the results highlight the complementary roles of description,
semantic, and appearance cues within the LSF.

Finally, we answer Q3 by reporting a comparison of
the memory footprint of our system against CLIP-based
approaches that rely on storing dense semantic features.
We consider the lowest-dimensional CLIP configuration,
namely ViT-B/32, which produces embeddings of 512
floating-point elements. Assuming 16-bit precision, each
embedding requires 512 × 2 B = 1024 B ≈ 1 KB. In our
most complex experimental scene, 21 objects are present
and the environment is represented at a voxel resolution of
25 mm per side, resulting in a total number of voxels equal
to Nvoxels = 626 140 for the scene. Storing a CLIP embed-
ding for each voxel would therefore require a total mem-
ory of MCLIP = Nvoxels × 1024 B ≈ 641 MB. In contrast,
our approach stores semantic information only at the ob-
ject level. For each object, we require at most 157 B: 12 B
for the two bounding box extents, assuming 16-bit floating-
point coordinates, up to 100 B for the textual description,
and up to 15 B each for the material, color, and label at-
tributes, assuming UTF-8 encoding with one byte per char-
acter. For the entire scene, this results in a total memory
usage of MLOST-3DSG = 21 × 157 B = 3297 B. This cor-
responds to slightly more than 3 KB to represent the scene,
while preserving open-vocabulary expressiveness and en-
abling efficient tracking of dynamic objects.

6. Discussion
The results indicate that lightweight, attribute-level seman-
tic representations can support object tracking in dynamic
environments without relying on dense visual embeddings.

Table 2. Ablation study on the LSF components, averaged through
the various LoCs.

LSF Deletions Updates
Full 0.778 0.944

sd, sm, sc 0.556 0.889
sℓ, sm, sc 0.667 0.667
sℓ, sd 0.667 0.778
sd 0.444 0.833
sl 0.333 0.556

The SUM maintains object identity across time and vary-
ing scene complexity, correctly handling object updates and
disappearances under partial observability, although errors
still occur in the presence of semantic ambiguities. The
ablation study shows that fine-grained descriptions play a
central role in instance discrimination, while chromatic and
material cues contribute to stable temporal updates, and
label-only similarity is insufficient for long-term persis-
tence. Also, storing semantics exclusively at the object level
yields substantial memory savings compared to CLIP-based
voxel representations. However, this efficiency comes with
a modest performance cost in challenging scenarios where
richer visual features could improve disambiguation. In par-
ticular, variability in VLM-generated descriptions can lead
to identity fragmentation when similarity scores fall below
the matching threshold, and the absence of temporal ag-
gregation makes the system sensitive to noisy or inconsis-
tent semantic estimates. Conservative graph update policies
may also introduce temporary object duplication when se-
mantic and spatial evidence disagree. Despite these limi-
tations, the results suggest that the proposed approach of-
fers a promising trade-off between efficiency and tracking
accuracy, and that incorporating more robust object profil-
ing, explicit temporal aggregation, and adaptive similarity
modeling could further narrow the performance gap while
preserving scalability.

7. Conclusion
In this paper, we introduced LOST-3DSG, a lightweight
open-vocabulary 3DSG designed to support semantic object
tracking in dynamic environments without relying on dense
Foundation Models embeddings. By operating on com-
pact, attribute-level representations, the proposed approach
significantly reduces memory and computational overhead
while still enabling reliable instance association over time.
Through real-world experiments, we demonstrated that sim-
ple semantic cues, when combined in the proposed manner,
are often sufficient to maintain consistent object identities
across motion, partial observability, and viewpoint changes.
Although the system is intentionally minimal, the results in-
dicate that heavyweight visual embeddings are not always



required for effective open-vocabulary scene understand-
ing. This work is intended to establish foundational insights
rather than provide a complete solution. Several directions
remain open for future research, including more robust tem-
poral aggregation of semantic descriptions, improved sim-
ilarity modeling, and closer integration with downstream
reasoning and planning modules. We hope this work en-
courages further exploration of lightweight and scalable
alternatives to dense semantic mapping approaches, and
serves as a starting point for future research on long-term,
open-world 3DSG-based scene understanding.
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